Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L.

This study aims to investigate the antimicrobial activity of C. zeylanica leaf extracts against pathogenic microorganisms, with the interactions of potential compounds being predicted by a computational approach. Ethyl acetate leaf extracts of C. zeylanica were evaluated for antimicrobial activity using an agar well diffusion method against pathogenic microorganisms (Staphylococcus epidermidis, Enterococcus faecalis, Salmonella paratyphi, Shigella dysenteriae, and Mycobacterium tuberculosis and Candida albicans). The ethyl acetate leaf extracts of the C. zeylanica were utilized for GC-MS analysis. Computational studies were performed to analyze the novel compound using Schrodinger software. The various concentrations of ethyl acetate leaf extract of C. zeylanica were checked against pathogenic microorganisms. Among them, Salmonella paratyphi shows the maximum inhibition. Molecular docking and ADME properties showed that (3E)-N-(3,4 Dichlorophenyl)-3-(Propionylhydrazono) butanamide, Heptadecanoic-Margaric acid and 5-(3-Fluorophenyl)-7-nitro-1,3-dihydro-2H-1,4-benzodiazepine-2-one had the highest fitness score and more specificity toward the microbial receptors. PMID: 30825430 [PubMed - as supplied by publisher]
Source: Analytical Biochemistry - Category: Biochemistry Authors: Tags: Anal Biochem Source Type: research