A metal-semiconductor transition triggered by atomically flat zigzag edge in monolayer transition-metal dichalcogenides

Publication date: Available online 28 February 2019Source: Physics Letters AAuthor(s): Yang Ni, Yan-Dong Guo, Xiao-Hong Yan, Hong-Li Zeng, Ying Zhang, Xin-Yu Chen, Xue-Yang ShenAbstractDue to the structure of three stacked layers, monolayer transition-metal dichalcogenides (TMDs) is different from graphene. Creating atomically flat graphene-like edges in them has long been expected, which is crucial to the modulation of electronic structures in two-dimensional systems. Recently, by thermal annealing, Chen et al. [21] successfully synthesized atomically flat Mo-terminated edge in monolayer MoS2. Inspired by this, through first-principles calculations, we studied the electronic and transport properties of typical TMD monolayers with transition atom-terminated flat zigzag edges, i.e., ScS2, VS2, CrS2, FeS2, NiS2, MoS2 and WS2. It is found that the nanoribbons with and without flat edges are both metallic. Interestingly, the vacancy in the flat edge could open a transmission gap at the Fermi level in the ScS2 ribbon, and trigger a metal-semiconductor transition. Further analysis shows that, the opening of bandgap around the Fermi level induced by the specific pattern of vacancies is the mechanism behind, which could be used as an modulating method for electronic structures. We believe our results are quite beneficial for the development of many other monolayer transition-metal dichalcogenides configurations, showing great application potential.
Source: Physics Letters A - Category: Physics Source Type: research

Related Links:

.
Source: International Journal of Sexual Health - Category: Sexual Medicine Authors: Source Type: research
.
Source: American Journal of Sexuality Education - Category: Sexual Medicine Authors: Source Type: research
.
Source: Systems Biology in Reproductive Medicine - Category: Sexual Medicine Authors: Source Type: research
.
Source: Systems Biology in Reproductive Medicine - Category: Sexual Medicine Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
.
Source: British Journal of Neurosurgery - Category: Neurosurgery Authors: Source Type: research
More News: Nanotechnology | Physics