Structure of fat-processing enzyme determined

FINDINGSAfter decades of work with no success, researchers have determined the high-resolution, three-dimensional structure for lipoprotein lipase, the enzyme that processes fats, or triglycerides, in the bloodstream and releases nutrients for vital tissues such as skeletal muscle and the heart. Triglycerides are the main source of fuel for most cells in the body.BACKGROUNDLipoprotein lipase is responsible for breaking down the triglycerides in lipoproteins, or fat-rich particles, in the bloodstream. In addition to releasing nutrients, or fatty acids, for important tissues, lipoprotein lipase plays a key role in generating the cholesterol-rich lipoproteins that promote atherosclerotic lesions within arteries. For more than three decades, researchers around the world have attempted to determine the structure of lipoprotein lipase, with the goal of understanding how the enzyme works and formulating strategies to reduce triglyceride levels in the bloodstream. Determining the structure of lipoprotein lipase requires crystallizing the enzyme. In the case of lipoprotein lipase, obtaining crystals proved to be extremely difficult, most likely because lipoprotein lipase is a highly unstable enzyme.  METHODIn the new study, researchers at UCLA and collaborators in Boston and Copenhagen created crystals for lipoprotein lipase. The breakthrough proved to be mixing lipoprotein lipase with another protein, GPIHBP1. GPIHBP1 is a capillary protein that binds lipoprotein lipase and shuttles...
Source: UCLA Newsroom: Health Sciences - Category: Universities & Medical Training Source Type: news