Switchable sniff-cam (gas-imaging system) based on redox reactions of alcohol dehydrogenase for ethanol and acetaldehyde in exhaled breath.

In this study, a gas-imaging system (sniff-cam) that can be used to simultaneously image the concentration distribution of multiple VOCs, namely, ethanol (EtOH) and acetaldehyde (AcH), was developed. The sniff-cam was based on the pH-dependent redox reactions of nicotinamide adenine dinucleotide (NAD)-dependent alcohol dehydrogenase (ADH). The sniff-cam was constructed with a camera, two ADH-immobilized meshes, and a UV-LED array sheet. The ADH-immobilized mesh containing a solution of the oxidized form of NAD (NAD+) or reduced form (NADH) was used as an EtOH-imaging mesh and an AcH-imaging mesh, respectively. The distributions of the EtOH and AcH concentrations were visualized through the fluorescence of NADH (the excitation wavelength was 340 nm; the emission wavelength was 490 nm) occurring by the ADH-mediated redox reaction. First, the influence of pH on the activity of the redox reaction of ADH was measured, and then the quantitativeness and selectivity of the sniff-cam were evaluated. The ADH-mediated reactions of EtOH and AcH showed maximum activities at pH 9.0 and pH 6.5, respectively. The sniff-cam demonstrated not only a dynamic range (0.1-1000 ppm for EtOH and 0.2-10 ppm for AcH) for measuring EtOH and AcH in breath after drinking alcohol, but also displayed a high selectivity against other breath VOCs. Finally, EtOH and AcH in breath after drinking alcohol were measured simultaneously. A group with high activity of aldehyde dehydrogenase type 2 (EtOH = 143...
Source: Talanta - Category: Chemistry Authors: Tags: Talanta Source Type: research
More News: Alcoholism | Organic | Science | Skin | Study