Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes

In this study, we hypothesized that the NLRP3 inflammasome product, IL-1β in response to exogenously administrated and endogenously produced d-ribose stimulation is released via extracellular vesicles including EVs via a sphingolipid-mediated molecular mechanisms controlling lysosome and multivesicular body (MVB) interaction. First, we demonstrated that both endogenous and exogenous d-ribose induced NLRP3 inflammasome activation to produce IL-1β, which was released via EVs in podocytes. Then, we found that colocalization of marker MVB marker VPS16 with IL-1β within podocytes increased upon d-ribose stimulation, which was accompanied by decreased colocalization of lysosome marker Lamp-1 and VPS16, suggesting decrease in MVB inclusion of IL-1β due to reduced lysosome and MVB interaction. All these changes were mimicked and accelerated by lysosome v-ATPase inhibitor, bafilomycin. Moreover, ceramide in podocytes was found elevated upon d-ribose stimulation, and prior treatments of podocyte with acid sphingomyelinase (Asm) inhibitor, amitriptyline, acid ceramidase (AC) inducer, genistein, or AC CRISPR/cas9 activation plasmids were found to decrease d-ribose-induced ceramide accumulation, EVs release and IL-1β secretion due to reduced interactions of lysosome with MVBs. These results suggest that inflammasome-derived products such as IL-1β during d-ribose stimulation are released via EVs, in which lysosomal sphingolipid-mediated regulation of lysosome function plays an import...
Source: Biochimica et Biophysica Acta (BBA) Molecular Cell Research - Category: Molecular Biology Source Type: research