Highly sensitive SERS monitoring of catalytic reaction by bifunctional Ag-Pd triangular nanoplates

Publication date: Available online 10 February 2019Source: Journal of Saudi Chemical SocietyAuthor(s): Jie Yang, Xin-Yue Wang, Ling Zhou, Fan Lu, Ning Cai, Ju-Mei LiAbstractSurface-enhanced Raman spectroscopy (SERS) can attain the “fingerprint” information of molecules from their vibrational transitions for detecting chemical species and thus displays extraordinary application value in studying chemical reaction mechanism catalyzed by noble metal nanoparticles in recent years. Herein, we successfully fabricated bifunctional Ag-Pd triangular nanoplates with integration of catalytic and SERS activities, using Ag triangular nanoplates as templates and Na2PdCl4 as Pd precursor in the presence of ascorbic acid acting as reducing agent and polyvinylpyrrolidone serving as stabilizing agent. We found slowly titrating Na2PdCl4 solution, compared with the one-shot injection during reaction, can stronger restrain the galvanic replacement reaction and maintain the Ag content, therefore retaining the plasmonic and SERS properties of Ag-Pd triangular nanoplates. By easily adjusting the amount of Na2PdCl4, we can optimize the SERS and catalytic activities of Ag-Pd triangular nanoplates. The optimal Ag-Pd triangular nanoplates with dual functionalities are used to follow the catalytic reduction process of 4-nitrothiophenol in the presence of NaBH4 by SERS. The results reveal 4-nitrothiophenol is directly transformed to 4-aminothiophenol through one-step route. Thereby, the prepared Ag-Pd...
Source: Journal of Saudi Chemical Society - Category: Chemistry Source Type: research