Exploring new insights in BAlN from evolutionary algorithms ab initio computations

Publication date: Available online 7 February 2019Source: Physics Letters AAuthor(s): H. Maiz Hadj Ahmed, H. Benaissa, A. Zaoui, M. FerhatAbstractBN-AlN alloys are potential candidates to achieve wide band gap material for ultraviolet device applications. By combing density functional theory and evolutionary structure predictions, we systematically explore the thermodynamic, mechanical, dynamical and optical properties of BxAl1−xN alloys. Through structure search, three compounds (cubic (BAl3N4, and B3AlN4, space group P-43m), and tetragonal (BAlN2, space group P-42m)) have been predicted. The calculated relative large formation enthalpies suggest that large miscibility gap exists in BAlN alloys. In addition, computed elastic constants and phonon show that these structures are mechanically and dynamically stable. From the state of the art LDA-1/2 we show that the direct band gap of BN-AlN evinces strong deviation from a linear dependence on B composition. We found -in particular- giant direct band gap bowing parameter of b∼11.6 eV for the entire range of composition, where b parameter is found to be sensitive to composition x. From a detailed analysis of the physical origin of the optical gap bowing b, we found that structural and chemical contributions play the most significant effects behind the huge optical band gap bowing parameter of BAlN alloys.
Source: Physics Letters A - Category: Physics Source Type: research
More News: Chemistry | Physics