Single-vesicle measurement of protein-induced membrane tethering

Publication date: Available online 5 February 2019Source: Colloids and Surfaces B: BiointerfacesAuthor(s): Bin Cai, Luning Yu, Savanna R. Sharum, Kai Zhang, Jiajie DiaoAbstractFunctions of the proteins involved in membrane tethering, a crucial step in membrane trafficking, remain elusive due to the lack of effective tools to investigate protein-lipid interaction. To address this challenge, we introduce a method to study protein-induced membrane tethering via in vitro reconstitution of lipid vesicles, including detailed steps from the preparation of the PEGylated slides to the imaging of single vesicles. Furthermore, we demonstrate the measurement of protein-vesicle interaction in tethered vesicle pairs using two representative proteins, the cytoplasmic domain of synaptotagmin-1 (C2AB) and α-synuclein. Results from Förster (fluorescence) resonance energy transfer (FRET) reveal that membrane tethering is distinguished from membrane fusion. Single-vesicle measurement also allows for assessment of dose-dependent effects of proteins and ions on membrane tethering. We envision that the continuous development of advanced techniques in the single-vesicle measurement will enable the investigation of complex protein-membrane interactions in live cells or tissues.Graphical abstract
Source: Colloids and Surfaces B: Biointerfaces - Category: Biochemistry Source Type: research
More News: Biochemistry | Study