Transport of gas molecules through dense membranes and intensification of mass transfer by radiation

Publication date: Available online 31 January 2019Source: Chemical Engineering and Processing - Process IntensificationAuthor(s): V. Levdansky, M. Šyc, P. IzákABSTRACTIt is known that fouling of membranes decreases their performance. New modern types of membranes which are used for separation of gas mixtures (e.g. supported ionic liquid and graphene-based membranes) require the methods for cleaning which differ from the methods used in classical membrane technology (e.g. backflushing). Mass transfer in these membranes can be blocked by the adsorbed foreign gas molecules or/and aerosol nanoparticles which are present in a gas phase near the feed side surface of the membranes. The new method of the intensification of mass transfer through the membranes by resonance radiation is considered. It is shown that resonance radiation, leading to selective excitation of the foreign gas molecules and a change in their sticking coefficient and the rate coefficient of desorption as well as to heating of the membrane, can reduce the affinity constant of the foreign gas that in turn decreases the surface coverage and the blocking effect of the adsorbed foreign gas molecules. A model is given for the transport of gas molecules through a dense flat membrane with the deposition of aerosol particles on the feed side surface of the membrane.Graphical abstract
Source: Chemical Engineering and Processing: Process Intensification - Category: Chemistry Source Type: research