Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools.

Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools. Syst Biol Reprod Med. 2019 Jan 24;:1-13 Authors: Desai M, Chauhan JB Abstract Methionine synthase encoded by the MTR gene is one of the key enzymes involved in the SAM (S- Adenosyl Methionine) cycle catalyzing the conversion of homocysteine to methionine. Methionine plays an important role in the DNA, RNA, protein, phospholipids, and neurotransmitters methylation. It also maintains serum homocysteine level and indirectly regulates de novo nucleotide synthesis and repair. The current study predicted the functional consequences of nsSNPs in human MTR gene using SIFT, PolyPhen2, PROVEAN, SNAP2, PMut, nsSNPAnalyzer, PhD-SNP, SNPs&GO, I-Mutant, MuPro, and iPTREE-STAB. The PTM sites within the protein were predicted using ModPred and the phylogenetic conservations of amino acids & conserved domains of protein were predicted using ConSurf and NCBI conserved domain search tool respectively. The protein 3D structure was generated using SPARKS-X and analyzed using RAMPAGE. Structural deviation was analyzed using TM-Score. STRING analysis was preformed to predict protein-protein interactions. D621G, G682D, V744L, V766E, and R1027W were predicted to be the most deleterious nsSNPs in MTR. R1027 was predicted to having the three PTM sites and G682 & V744 were predicted as highly conserved residues. D621G, G682D, ...
Source: Systems Biology in Reproductive Medicine - Category: Reproduction Medicine Authors: Tags: Syst Biol Reprod Med Source Type: research