Formation of intermediate coupling optical polarons and bipolarons in two-dimensional systems

Publication date: Available online 22 January 2019Source: Physics Letters AAuthor(s): S. Dzhumanov, P.J. Baimatov, Sh.T. Inoyatov, Sh.S. Djumanov, A.G. GulyamovAbstractThe formation of the optical polaron and bipolaron in two-dimensional (2D) systems is studied in the intermediate electron–phonon coupling regime. The total energies of the 2D polaron and bipolaron are calculated by using the Buimistrov–Pekar method of canonical transformations. The obtained results are compared with other existing results obtained by using the Feynman path integral method and the modified Lee–Low–Pines unitary transformation method. It is shown that the electron–phonon correlation significantly reduces the total energy of the 2D polaron in comparison with the energy of the strong coupling (adiabatic) polaron. It is found that the polaron formation in 2D systems is possible when the electron–phonon coupling constant α is greater than the critical value αc≃2.94, which is much lower than a critical value of the electron–phonon coupling constant α in three-dimensional (3D) systems. The critical values of the Fröhlich coupling constant α and the ratio η=ε∞/ε0 (where ε∞ and ε0 are the high frequency and static dielectric constants, respectively), which determine the bipolaron stability region in 2D systems, are calculated numerically. It is interesting for application to the layered cuprate superconductors that the (bi)polarons are formed more easily in quasi-2D regions...
Source: Physics Letters A - Category: Physics Source Type: research
More News: Physics