Binomial Logistic Regression and Artificial Neural Network Methods to Classify Opioid-Dependent Subjects and Control Group Using Quantitative EEG Power Measures.

In this study, we introduce the 2 aforementioned approaches in order to generate a model dichotomizing 75 opioid-dependent patients and 59 control subjects from each other. Quantitative electroencephalography (QEEG) absolute power value of each electrode were calculated for 4 consecutive frequency bands namely delta, theta, alpha, and beta with the frequencies, 0.5 to 4, 4 to 8, 8 to 12, and 12 to 20 Hz, respectively. Significant independent variables contributing to the classification were underlined in LR while a feature selection (FS) method, genetic algorithm, is being applied to the ANN model to reveal more informative features. The performances of the classifiers were finally compared considering overall classification accuracies, area under receiver operating characteristic curve scores, and Gini coefficient. Although ANN-based classifier outperformed compared with LR, both models performed satisfactorily for absolute power measure in beta frequency band. Our results underline the potential benefit of the introduced methodology is promising and is to be treated as a clinical interface in dichotomizing substance use disorders subjects and for other medical data analysis studies. PMID: 30642219 [PubMed - as supplied by publisher]
Source: Clinical EEG and Neuroscience - Category: Neuroscience Authors: Tags: Clin EEG Neurosci Source Type: research