Macrophage phosphoproteome analysis reveals MINCLE-dependent and -independent mycobacterial cord factor signaling.

Macrophage phosphoproteome analysis reveals MINCLE-dependent and -independent mycobacterial cord factor signaling. Mol Cell Proteomics. 2019 Jan 11;: Authors: Hansen M, Peltier J, Killy B, Amin B, Bodendorfer B, Härtlova A, Uebel S, Bosmann M, Hofmann J, Büttner C, Ekici AB, Kuttke M, Franzyk H, Foged C, Beer-Hammer S, Schabbauer G, Trost M, Lang R Abstract Immune sensing of Mycobacterium tuberculosis relies on recognition by macrophages. Mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM), is the most abundant cell wall glycolipid and binds to the C-type lectin receptor (CLR) MINCLE. To explore the kinase signaling linking the TDM-MINCLE interaction to gene expression, we employed quantitative phosphoproteome analysis. TDM caused upregulation of 6.7% and suppressed 3.8% of the 14,000 phospho-sites identified on 3727 proteins. MINCLE-dependent phosphorylation was observed for canonical players of CLR signaling (e.g. PLCg, PKCd), and was enriched for PKCd and GSK3 kinase motifs. MINCLE-dependent activation of the PI3K-AKT-GSK3 pathway contributed to inflammatory gene expression and required the PI3K regulatory subunit p85a. Unexpectedly, a substantial fraction of TDM-induced phosphorylation was MINCLE-independent, a finding paralleled by transcriptome data. Bioinformatics analysis of both datasets concurred in the requirement for MINCLE for innate immune response pathways and processes. In contrast, MINCLE-independent phospho...
Source: Molecular and Cellular Proteomics : MCP - Category: Molecular Biology Authors: Tags: Mol Cell Proteomics Source Type: research