MAPK- and glycogen synthase kinase 3-mediated phosphorylation regulates the DEAD-box protein modulator Gle1 for control of stress granule dynamics [Gene Regulation]

Rapid expression of critical stress response factors is a key survival strategy for diseased or stressed cells. During cell stress, translation is inhibited, and a pre-existing pool of cytoplasmic mRNA–protein complexes reversibly assembles into cytoplasmic stress granules (SGs). Gle1 is a conserved modulator of RNA-dependent DEAD-box proteins required for mRNA export, translation, and stress responses. Proper Gle1 function is critical as reflected by some human diseases such as developmental and neurodegenerative disorders and some cancers linked to gle1 mutations. However, the mechanism by which Gle1 controls SG formation is incompletely understood. Here, we show that human Gle1 is regulated by phosphorylation during heat shock stress. In HeLa cells, stress-induced Gle1 hyperphosphorylation was dynamic, primarily in the cytoplasmic pool, and followed changes in translation factors. MS analysis identified 14 phosphorylation sites in the Gle1A isoform, six of which clustered in an intrinsically disordered, low-complexity N-terminal region flanking the coil-coiled self-association domain. Of note, two mitogen-activated protein kinases (MAPKs), extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), phosphorylated the Gle1A N-terminal domain, priming it for phosphorylation by glycogen synthase kinase 3 (GSK3). A phosphomimetic gle1A6D variant (in which six putative Ser/Thr phosphorylation sites were substituted with Asp) perturbed self-association and...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Cell Biology Source Type: research