Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization

Publication date: April 2019Source: Soil Biology and Biochemistry, Volume 131Author(s): Xiaomeng Wei, Yajun Hu, Bahar S. Razavi, Juan Zhou, Jianlin Shen, Paolo Nannipieri, Jinshui Wu, Tida GeAbstractAs a homologous gene encoding microbial alkaline phosphomonoesterase, the expression of phoD is critically controlled by P availability and thus contributes to the mineralization of soil organic P under P-depleted condition. However, its role in the regulation of soil P turnover is largely unknown due to the complex coupling of physiochemical and biological processes in the P cycle, especially in paddy field. We hypothesized that 1) P fertilization would decrease the abundance of phoD gene and change the composition of phoD-harboring microbial community and 2) the high abundance of phoD-harboring microorganisms in P-poor soil would stimulate the synthesis of alkaline phosphomonoesterase, thus mitigating P limitation via the mineralization of organic P. After 42 days of rice growth, the phoD abundance negatively correlated with soil P availability, and it was significantly higher in non-fertilized treatments than in P-fertilized treatments for both rhizosphere and bulk soils. A stronger competition among phoD-harboring microorganisms was detected in non-fertilized soil than in P-fertilized soil, with Bradyrhizobium, Methylobacterium, and Methylomonas being the dominant taxa in all samples. However, the high phoD gene abundance under P-poor condition was mainly due to the growth of ...
Source: Soil Biology and Biochemistry - Category: Biology Source Type: research