Researchers develop non-invasive method to detect tumor-causing mutations in saliva

IMPACT Current methods to screen for lung cancer mutations in plasma or blood are complicated, technique-dependent and not readily available. Electric field-induced release and measurement is a reliable method to detect tumor-causing, lung cancer mutations in saliva that would be non-invasive, cost-effective and rapid. Clinicians could also use this technology to adjust their therapeutic strategies in real-time, improving clinical outcomes. FINDINGS Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for 27 percent of all cancer deaths among both men and women, with about 225,000 new cases diagnosed in 2014, according to the American Cancer Society. Lung cancer kills more people than colon, breast and prostate cancers combined. Early detection improves survival rates for people diagnosed with cancer, especially people diagnosed with lung cancer. Researchers from the UCLA School of Dentistry and collaborators from several other leading research institutions have discovered that a liquid biopsy of saliva may be as successful in detecting lung cancer as testing tissue that has to be surgically removed from the lungs. A research team, led by Dr. David Wong, the school’s associate dean for research, completed a study that utilized a novel technology called electric field-induced release and measurement (EFIRM) to test lung cancer patients’ saliva for epidermal growth factor receptor (EGFR) gene mutations, a sign of lung cancer, which can be treated ...
Source: UCLA Newsroom: Health Sciences - Category: Universities & Medical Training Source Type: news