Fuzzy logic based approaches for gene regulatory network inference

Publication date: Available online 17 December 2018Source: Artificial Intelligence in MedicineAuthor(s): Khalid RazaAbstractThe rapid advancements in high-throughput techniques have fueled large-scale production of biological data at very affordable costs. Some of these techniques are microarrays and next-generation sequencing that provide genome level insight of living cells. As a result, the size of most of the biological databases, such as NCBI-GEO, NCBI-SRA, etc., is growing exponentially. These biological data are analyzed using various computational techniques for knowledge discovery – which is also one of the objectives of bioinformatics research. Gene regulatory network (GRN) is a gene-gene interaction network which plays a pivotal role in understanding gene regulation processes and disease mechanism at the molecular level. From last couple of decades, researchers are interested in developing computational algorithms for GRN inference (GRNI) from high-throughput experimental data. Several computational approaches have been proposed for inferring GRN from gene expression data including statistical techniques (correlation coefficient), information theory (mutual information), regression-based approaches, probabilistic approaches (Bayesian networks, naïve byes), artificial neural networks and fuzzy logic. The fuzzy logic, along with its hybridization with other intelligent approaches, is a well-studied technique in GRNI due to its several advantages. In this paper, we...
Source: Artificial Intelligence in Medicine - Category: Bioinformatics Source Type: research