Inhibition of HOXB7 suppresses p27-mediated acute lymphoblastic leukemia by regulating basic fibroblast growth factor and ERK1/2

In this study, we explored the molecular mechanism of HOXB7 in cell viability and cell cycle in ALL cell lines.Materials and methodsPeripheral blood lymphocytes was isolated by Isopycnic Ficoll-Hypaque solution; Relative mRNA expression of HOXB7 was measured by RT-qPCR; Relative protein expressions of HOXB7, p27, bFGF, pERK1/2 were tested by Western blot assay; Cell viability was tested by MTT; Cell proliferation was detected by BrdU assay; 2.8. Cell cycle was analyzed by flow cytometry.Key findingsHOXB7 was significantly elevated in peripheral blood lymphocytes of patients with ALL. HOXB7 was inhibited by HOXB7 siRNA transfection; cell viability decreased; and cell cycle was arrested in ALL cell lines. Meanwhile, HOXB7 suppression significantly induced the protein expression of p27 (cyclin-dependent kinase inhibitor). We also demonstrated the molecular mechanism of HOXB7 regulation on p27. HOXB7 suppression obviously inhibited the protein expressions of b basic fibroblast growth factor (bFGF) and p-ERK1/2. Also, the inhibitory effects of HOXB7 suppression on p-ERK1/2, cell viability, and cell cycle in ALL cell lines were markedly reversed after culturing with bFGF (9 ng/mL) for 24 h. After incubating with bFGF, cells with HOXB7 inhibition were treated with a specific ERK1/2 inhibitor, PD98095, after which the effects of bFGF on protein expression of p27, cell viability, and cell cycle were obviously reversed.SignificanceOur study suggests that inhibiting HOXB7 suppresses...
Source: Life Sciences - Category: Biology Source Type: research