Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study

by Shane Nanayakkara, Sam Fogarty, Michael Tremeer, Kelvin Ross, Brent Richards, Christoph Bergmeir, Sheng Xu, Dion Stub, Karen Smith, Mark Tacey, Danny Liew, David Pilcher, David M. Kaye BackgroundResuscitated cardiac arrest is associated with high mortality; however, the ability to estimate risk of adverse outcomes using existing illness severity scores is limited. Using in-hospital data available within the first 24 hours of admission, we aimed to develop more accurate models of risk prediction using both logistic regression (LR) and machine learning (ML) techniques, with a combination of demographic, physiologic, and biochemical information. Methods and findingsPatient-level data were extracted from the Australian and New Zealand Intensive Care Society (ANZICS) Adult Patient Database for patients who had experienced a cardiac arrest within 24 hours prior to admission to an intensive care unit (ICU) during the period January 2006 to December 2016. The primary outcome was in-hospital mortality. The models were trained and tested on a dataset (split 90:10) including age, lowest and highest physiologic variables during the first 24 hours, and key past medical history. LR and 5 ML approaches (gradient boosting machine [GBM], support vector classifier [SVC], random forest [RF], artificial neural network [ANN], and an ensemble) were compared to the APACHE III and Australian and New Zealand Risk of Death (ANZROD) predictions. In all, 39,566 patients from 186 ICUs were analysed. M...
Source: PLoS Medicine - Category: Internal Medicine Authors: Source Type: research