Development of Acute Myeloid Leukemia Cell Membrane Coated Nanoparticles (AMCNPs) for Cancer Vaccination Immunotherapy

Acute Myeloid Leukemia (AML) is the most common acute leukemia in adults and has a five-year survival rate under 50%. Most patients will relapse even after complete remission is achieved through standard chemotherapy. Thus, one barrier in current AML therapy is how to target the minimal residual disease during remission. Recent developments in understanding cancer cell antigen presentation and immunosuppression have revealed the promise of cancer immunotherapy in activating immune responses to target residual disease. Each leukemia patient has a unique spectrum of cell surface antigens, which are mostly uncharacterized. If these antigens can be efficiently presented to the patient's immune system, immune responses to fight the leukemia can be significantly enhanced. We therefore sought to develop and characterize an AML cell membrane-coated nanoparticle (AMCNP) platform with nanoparticles (NPs) carrying the same surface antigens as the source leukemic cells for use as an anti-cancer vaccine.To demonstrate that our AMCNP vaccines enhance leukemia-specific antigen dendritic cell (DC) presentation and T-cell responses, we modified the C1498 murine AML cell line to express membrane-bound chicken ovalbumin (C1498-mOVA) as a model antigen. We confirmed that the C1498-mOVA line presents the OVA MHC class-I "SIINFEKL" antigen through flow-cytometry and LacZ B3Z T-cell activation assays. The C1498-mOVA line remained leukemogenic when injected into C57BL/6 mice, with survival times bet...
Source: Blood - Category: Hematology Authors: Tags: 616. Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation: Poster III Source Type: research