Blockade of Mer By the Small Molecule Inhibitor R992 Inhibits Multiple Myeloma and Its Associated Bone Disease By Restoring the Perturbed Bone Homeostasis

Despite many therapeutic advances in recent years Multiple Myeloma (MM) still remains incurable in the majority of the patients. In addition, MM patients suffer significantly from co-morbidities including bone pain and renal insufficiency. Therefore, the development of novel treatments is warranted. The TAMR family consists of Tyro3, Axl and Mer which represent evolving targets in cancer. We demonstrated that the role of TAMR is non-redundant in hematologic malignancies, with Axl exerting an important function in AML, but not in MM, where Mer represents a novel target.Therefore, we tested the therapeutic potential of the Mer-inhibitor R992, which has an 8-fold selectivity over Tyro3 and a 13-fold selectivity over Axl in preclinical MM models (Rigel, San Francisco, USA).R992 exerted a dose-dependent growth inhibition of U266, JJN3 and RPMI8226 cells in vitro (n=3, *p<0.001). Mechanistically, Mer blockade inhibited proliferation in 5-bromo-2'-deoxyuridine assays and induced apoptosis as shown by increased numbers of Annexin V+ cells (n=3,*p<0.05 and *p<0.001, respectively). To delineate signaling pathways mediating the biological effects of Mer blockade in MM cells we investigated key mediators of MM cell proliferation and survival. Here, we found reduced phosphorylation of Akt upon Mer inhibition with R992. Furthermore, R992 inhibited mitogen-activated protein kinase (MAPK) pathways Erk and p38. Subsequently, we investigated whether inhibition of Mer signaling increas...
Source: Blood - Category: Hematology Authors: Tags: 652. Myeloma: Pathophysiology and Pre-Clinical Studies, excluding Therapy: Poster I Source Type: research