Orthosilicic Acid Accelerates Bone Formation in Human Osteoblast-Like Cells Through the PI3K-Akt-mTOR Pathway.

In this study, we determined the possible osteogenesis-related mechanisms of orthosilicic acid at a molecular level. We detected the relevant pathway and osteogenic indicators by immunofluorescence (IF), Western blot, alkaline phosphatase (ALP) staining (using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium [BCIP/NBT]), ALP enzyme labeling method, osteocalcin (OCN), and N-terminal propeptide of type 1 procollagen (P1NP) enzyme-linked immunosorbent assay (ELISA). We found that orthosilicic acid is capable of enhancing the expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phospho-protein kinase B (P-Akt), phospho-mammalian target of rapamycin (P-mTOR), and related osteogenic markers (runt-related transcription factor 2 [RUNX2], type I collagen [COL1], ALP, OCN, and P1NP). However, with the addition of PI3K-Akt-mTOR pathway-specific inhibitor LY294002, the expression of PI3K, P-Akt, P-mTOR, RUNX2, COL1, ALP, OCN, and P1NP decreased. The results indicated that the PI3K-Akt-mTOR pathway played a positive regulatory role in the process of orthosilicic acid-mediated osteogenesis in vitro. PMID: 30421162 [PubMed - as supplied by publisher]
Source: Biological Trace Element Research - Category: Biology Authors: Tags: Biol Trace Elem Res Source Type: research