A Mechanism by which Autoimmunity Raises the Risk of Cardiovascular Disease

In autoimmunity, the immune system becomes dysregulated and mistakenly attacks portions of the patient's own biochemistry. The broad variety of autoimmune conditions are differentiated from one another on the basis of exactly which structures and cells come under attack. Some autoimmune conditions are highly disabling or lethal, while others are comparative mild, but even lesser autoimmune conditions such as rheumatoid arthritis still shorten life expectancy. To the degree to which autoimmunity results in increased inflammation, a shorter life is the expected outcome, even when the tissues targeted by the immune system are less vital. Chronic inflammation is a major downstream mechanism of aging, and speeds the development and progression of all of the common fatal age-related conditions. Most autoimmune disorders are comparatively poorly understood. The immune system is enormously complex, and far from completely mapped. Many of the autoimmune conditions in which etiology remains obscure may turn out to be collections of distinct conditions with varied causes and a similar outcome. Further, numerous forms of autoimmunity tend to arise with age as the immune system becomes worn and dysfunctional, and are presently lumped in with the other serious consequences of a failing immune system. These age-related autoimmunities are even less well understood than their more widely recognized counterparts, and it is very likely that many more remain to be discovered in the first ...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs

Related Links:

Authors: Luo Y, Xiao R Abstract Scleroderma (systemic sclerosis; SSc) is a complex and highly heterogeneous multisystem rheumatic disease characterized by vascular abnormality, immunologic derangement, and excessive deposition of extracellular matrix (ECM) proteins. To date, the etiology of this life-threatening disorder remains not fully clear. More and more studies show epigenetic modifications play a vital role. The aberrant epigenetic status of certain molecules such as Fli-1, BMPRII, NRP1, CD70, CD40L, CD11A, FOXP3, KLF5, DKK1, SFRP1, and so on contributes to the pathogenesis of progressive vasculopathy, autoi...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Chan VS Abstract Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction ...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Epigenetics in Primary Sjögren's Syndrome. Adv Exp Med Biol. 2020;1253:285-308 Authors: Bordron A, Devauchelle-Pensec V, Le Dantec C, Capdeville A, Brooks WH, Renaudineau Y Abstract Primary Sjögren's syndrome (SjS) is a chronic and systemic autoimmune epithelitis with predominant female incidence, which is characterized by exocrine gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial and evidence is growing to consider that epigenetic factors are playing a crucial role in its development. Independent from DNA sequence mutations, epigenetics is described as inheri...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Xie Z, Chang C, Huang G, Zhou Z Abstract Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain ...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Shao S, Gudjonsson JE Abstract Psoriasis is a chronic and recurrent inflammatory skin disease, involving the rapid proliferation and abnormal differentiation of keratinocytes and activation of T cells. It is generally accepted that the central pathogenesis of psoriasis is a T cell-dominant immune disorder affected by multiple factors including genetic susceptibility, environmental factors, innate and adaptive immune responses, etc. However, the exact etiology is largely unknown. In recent years, epigenetic involvements, such as the DNA methylation, chromatin modifications, and noncoding RNA regulation are ...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Wu H, Chang C, Lu Q Abstract Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental fact...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Chang C, Wu H, Lu Q Abstract Food allergy is a global health problem, particularly in developed countries. It is mainly mediated by Th2 cell and IgE produced by B cells. While the pathogenesis of IgE-mediated food allergy is quite straightforward, the factors that lead to the development of food allergies at any age in children and adults are unclear. Recent studies have revealed that genetics, epigenetics, and environmental exposures contribute to the development of atopy. In this chapter, we discuss the interplay between these three key elements, reveal how epigenetic modifications may mediate genetic su...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Mu Z, Zhang J Abstract Atopic Dermatitis (AD) is a common inflammatory disease with a genetic background. The prevalence of AD has been increasing in many countries. AD patients often have manifestations of pruritus, generalized skin dryness, and eczematous lesions. The pathogenesis of AD is complicated. The impaired skin barrier and immune imbalance play significant roles in the development of AD. Environmental factors such as allergens and pollutants are associated with the increasing prevalence. Many genetic and environmental factors induce a skin barrier deficiency, and this can lead to immune imbalanc...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Ceribelli A, Selmi C Abstract Genomic predisposition fails to fully explain the onset of complex diseases, which is well illustrated by the largely incomplete concordance among monozygotic twins. Epigenetic mechanisms, including DNA methylation, chromatin remodeling, and non-coding RNA, are the link between environmental stimuli and disease onset on a permissive genetic background in autoimmune and chronic inflammatory diseases. Autoimmune diseases now include almost 100 conditions and are estimated to cumulatively affect up to 5% of the world population with a healthcare expenditure superior to cancer wor...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Authors: Zhang L, Lu Q, Chang C Abstract Epigenetic mechanisms, which include DNA methylation, histone modification, and microRNA (miRNA), can produce heritable phenotypic changes without a change in DNA sequence. Disruption of gene expression patterns which are governed by epigenetics can result in autoimmune diseases, cancers, and various other maladies. Mechanisms of epigenetics include DNA methylation (and demethylation), histone modifications, and non-coding RNAs such as microRNAs. Compared to numerous studies that have focused on the field of genetics, research on epigenetics is fairly recent. In contrast to ...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
More News: Arthritis | Autoimmune Disease | Biochemistry | Biotechnology | Cardiology | Cardiovascular | Cholesterol | Diabetes | Diets | Endocrinology | Heart | Heart Attack | Heart Disease | Lupus | Nutrition | Psoriasis | Research | Rheumatoid Arthritis | Rheumatology | Skin