Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites

Publication date: Available online 9 November 2018Source: Composites Science and TechnologyAuthor(s): Yiming Huangfu, Chaobo Liang, Yixuan Han, Hua Qiu, Ping Song, Lei Wang, Jie Kong, Junwei GuAbstractEthylenediamine functionalized Fe3O4 (NH2-Fe3O4) nanoparticles and graphene oxide (GO) were compounded firstly, followed by the addition of L-ascorbic acid, to obtain the Fe3O4/thermally annealed graphene aerogel (Fe3O4/TAGA) by thermal annealing method. And the Fe3O4/TAGA/epoxy nanocomposites were then fabricated via template-casting method. When the mass ratio of GO to NH2-Fe3O4 was 2:1 and the total mass fraction of Fe3O4/TAGA was 2.7 wt% (1.5/1.2 wt% Fe3O4/TAGA), the obtained Fe3O4/TAGA/epoxy nanocomposites presented the highest electromagnetic interference shielding effectiveness (EMI SE of 35 dB in the X-band), much higher than that of epoxy nanocomposites (10 dB) filled with the same Fe3O4/thermal annealing graphene oxide (Fe3O4/TAGO) loading. Meantime, the corresponding Fe3O4/TAGA/epoxy nanocomposites also presented the outstanding electrical conductivity of 27.5 S/m.
Source: Composites Science and Technology - Category: Science Source Type: research