Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway.

This study aims to investigate the size-segregated PM (PM10, PM2.5, and PM1) deposition in human lungs. Size-segregated PM is collected using the Grimm portable environmental dust monitor during winter season near an arterial road located in Chennai city of Tamil Nadu state, India. Multiple-Path Particle Dosimetry (MPPD) Model version 3.04 is utilized for quantifying PM deposition. In MPPD, airway structures of infants (3 and 28 months), children (3, 8, 9 and 14 years) and adults (18 and 21 years) are considered for the study. The values of PM concentration, body orientation, breathing scenario, tidal volume, pause fraction, inspiration fraction, and breathing frequency are specified in the MPPD for quantifying PM depositions. Results showed that 8-year children and 28 months infant groups are recorded with maximum and minimum size-segregated PM deposition respectively. The coarse particles (PM10) are primarily deposited in the head (55-95%) and tracheobronchial (3-44%) regions whereas fine particles (PM2.5 and PM1) depositions are observed maximum in the head (36-63%) and pulmonary (28.2-52.7%) regions. Except for the adult age group, PM2.5 has the maximum deposition percentage in tracheobronchial and pulmonary regions. In the case of lobar depositions, lower lobes receive maximum deposition (66.4%) than the upper (27.2%) and middle lobes (6.4%). PM2.5 dominated the deposition in all five lobes of infant, children, and adults. The clearance rate of deposited PM is high in th...
Source: Ecotoxicology and Environmental Safety - Category: Environmental Health Authors: Tags: Ecotoxicol Environ Saf Source Type: research