Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum

We report here the effects of hydrogen sulfide (sulfide), that accumulates in ETHE1 deficiency, in rat cerebellum. Sulfide impaired electron transfer and oxidative phosphorylation. Sulfide also induced mitochondrial swelling, and decreased ΔΨm and calcium retention capacity in cerebellum mitochondria, which were prevented by cyclosporine A (CsA) plus ADP, and ruthenium red, suggesting mitochondrial permeability transition (mPT) induction. Melatonin (MEL) and N-ethylmaleimide also prevented sulfide-induced alterations. Prevention of sulfide-induced decrease of ΔΨm and viability by CsA and MEL was further verified in cerebellum neurons. The data suggest that sulfide induces mPT pore opening via thiol modification and ROS generation.
Source: Mitochondrion - Category: Biochemistry Source Type: research