Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses

In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) and model protein antigen ovalbumin (OVA) were encapsulated into Poly(lactic-co-glycolic acid) (PLGA) to formulate the novel NPs-based vaccine delivery system (ASP-PLGA/OVA). These formulations were subcutaneously administered to mice, then the magnitude and kinetics of antibody and cellular immune responses were assessed. The ASP-PLGA/OVA NPs were pherical in shape with smooth surfaces, approximately 225.2 nm in average size, negatively charged (around -11.27 mV), and the encapsulation efficiency of OVA at around 66.28 %, respectively. Furthermore, ASP-PLGA/OVA NPs could keep stable at 4 °C over 30 days and provide a sustained and controlled release of OVA from the NPs. The results demonstrated that mice immunized with ASP-PLGA/OVA NPs could significantly enhance lymphocyte proliferation and improve the ratio of CD4+ to CD8+ T cells, thereby ASP-PLGA/OVA NPs could induce a strong cellular immune response. Moreover, the ASP-PLGA/OVA NPs could induce vigorous and long-term IgG immune responses with a mixed Th1 and Th2 responses and up-regulate the levels of Th-associated cytokines. These results suggested that ASP-PLGA/OVA NPs, which stimulated strong and continuous antibody responses and induced cellular immune responses, could potentially serve as an efficient and safe vaccine delivery and adjuvant system against infections and diseases.Graphical abstract
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research