Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor

Publication date: Available online 29 October 2018Source: Journal of Hazardous MaterialsAuthor(s): Magnus Lindroos, David Hörnström, Gen Larsson, Martin Gustavsson, Antonius J.A. van MarisAbstractEnvironmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 ± 2 treated reactor volumes (39 ± 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 ± 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low-pH regeneration released all chloroquine without apparent capaci...
Source: Journal of Hazardous Materials - Category: Environmental Health Source Type: research