Flame Retardant Vinylon/Poly(m-phenylene isophthalamide) Blended Fibers with Synergistic Flame Retardancy for Advanced Fireproof Textiles

This study provides a simple and effective strategy to improve the flame retardancy of textiles through a synergistic effect between the blended fibers, and a system with synergistic in flame retardant vinylon (FRV)/poly(m-phenylene isophthalamide) (PMIA) blended fibers is discovered. The FRV/PMIA 50/50 exhibits a much higher time to ignition and a lower peak heat release rate than those of the neat components, indicating a synergistic flame retardancy between constituents. The corresponding mechanism is explored. The residual char layer formed by blended fibers connects together and keeps the original fiber shape, which acts as a barrier slowing heat transmission and gas diffusion. Concurrently, thermal degradation analysis of blended fibers implies that both components mutually interact with each other, resulting in a higher experimental amount of incombustible gases at an early degradation stage and lower experimental amount of combustible gases at a later degradation stage as compared to the theoretical one. Therefore, the synergistic flame retardancy in FRV/PMIA blended fibers is attributed to the actions in the condensed and gas phases during pyrolysis. This work provides an effective strategy to design fireproof textiles.Graphical abstract
Source: Journal of Hazardous Materials - Category: Environmental Health Source Type: research
More News: Study