Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation

Publication date: Available online 2 November 2018Source: Journal of Hazardous MaterialsAuthor(s): Esther Gomez-Herrero, Montserrat Tobajas, Alicia Polo, Juan J. Rodriguez, Angel F. MohedanoAbstractIn this work, we assessed the potential of combining Fenton´s reagent and biological oxidation for removing the imidazolium-based ionic liquid 1-Ethyl-3-methylimidazolium chloride (EmimCl). Fenton-like oxidation was conducted at variable H2O2 doses from 20 to 100% the stoichiometric value as calculated from the theoretical chemical oxygen demand (COD). The stoichiometric H2O2 dose afforded Total Organic Carbon (TOC) conversion and COD removal of 50 and 62%, respectively. Identifying the reaction by-products formed at low hydrogen peroxide doses allowed a plausible pathway for EmimCl oxidation to be proposed. The effluents from Fenton-like oxidation at substoichiometric H2O2 doses were less ecotoxic and more biodegradable than was the parent ionic liquid. The effluent from Fenton-like oxidation with the 60% H2O2 dose (TOC conversion ≅ 41%, COD removal ≅ 31%) was subsequently subjected to an effective biological treatment that allowed complete removal of the starting compound, increased its ecotoxicity to a low–moderate level and rendered it acceptably biodegradable. Biological oxidation was performed in 8-h and 12-h cycles in a sequencing batch reactor. Combining Fenton and biological oxidation of EmimCl afforded TOC conversion and COD removal of around 90%.Graphical abstract
Source: Journal of Hazardous Materials - Category: Environmental Health Source Type: research
More News: Chemistry | Chloride | Organic