Predicting bioprocess targets of chemical compounds through integration of chemical-genetic and genetic interactions

We present here a formal description and rigorous benchmarking of the CG-TARGET method, showing that, compared to alternative enrichment-based approaches, it achieves similar or better accuracy while substantially improving the ability to control the false discovery rate of biological process predictions. Additional investigation of the compatibility of chemical-genetic and genetic interaction profiles revealed that one-third of observed chemical-genetic interactions contributed to the highest-confidence biological process predictions and that negative chemical-genetic interactions overwhelmingly formed the basis of these predictions. We also present experimental validations of CG-TARGET-predicted tubulin polymerization and cell cycle progression inhibitors. Our approach successfully demonstrates the use of genetic interaction networks in the high-throughput functional annotation of compounds to biological processes.
Source: PLoS Computational Biology - Category: Biology Authors: Source Type: research