Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model.

Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model. Eur Cell Mater. 2018 Oct 25;36:200-217 Authors: Rosenzweig DH, Fairag R, Mathieu AP, Li L, Eglin D, D'Este M, Steffen T, Weber MH, Ouellet JA, Haglund L Abstract Numerous studies show promise for cell-based tissue engineering strategies aiming to repair painful intervertebral disc (IVD) degeneration. However, clinical translation to human IVD repair is slow. In the present study, the regenerative potential of an autologous nucleus pulposus (NP)-cell-seeded thermoresponsive hyaluronic acid hydrogel in human lumbar IVDs was assessed under physiological conditions. First, agarose-encased in vitro constructs were developed, showing greater than 90 % NP cell viability and high proteoglycan deposition within HA-pNIPAM hydrogels following 3 weeks of dynamic loading. Second, a bovine-induced IVD degeneration model was used to optimise and validate T1ρ magnetic resonance imaging (MRI) for detection of changes in proteoglycan content in isolated intact IVDs. Finally, isolated intact human lumbar IVDs were pre-scanned using the established MRI sequence. Then, IVDs were injected with HA-pNIPAM hydrogel alone or autologous NP-cell-seeded. Next, the treated IVDs were cultured under cyclic dynamic loading for 5 weeks. Post-treatment T1ρ values were significantly higher as compa...
Source: European Cells and Materials - Category: Cytology Tags: Eur Cell Mater Source Type: research