Hydrogen sorption in TiZrNbHfTa high entropy alloy

Publication date: 15 February 2019Source: Journal of Alloys and Compounds, Volume 775Author(s): C. Zlotea, M.A. Sow, G. Ek, J.-P. Couzinié, L. Perrière, I. Guillot, J. Bourgon, K.T. Møller, T.R. Jensen, E. Akiba, M. SahlbergAbstractHigh Entropy Alloys (HEA), where five or more elements are mixed together in near equiatomic ratios offer promising properties as hydrogen storage materials due to their ability to crystallize in simple cubic structures in the presence of large lattice strain originating from the different sizes of the atoms. In this work, the hydrogen absorption and desorption as well as the cycling properties of the TiZrNbHfTa HEA have been studied by in situ Synchrotron X-Ray diffraction, Pressure-Composition-Isotherm, Thermal Desorption Spectroscopy and Differential Scanning Calorimetry. The alloy crystallizes in a cubic bcc phase and undergoes a two-stage hydrogen absorption reaction to a fcc dihydride phase with an intermediate tetragonal monohydride, very similar to the V-H system. The hydrogen absorption/desorption in TiZrNbHfTa is completely reversible and the activation energy of desorption could be calculated. Furthermore, we have observed an interesting macrostructure following parallel planes after the formation of the dihydride phase, which is retained after desorption.Graphical abstract
Source: Journal of Alloys and Compounds - Category: Chemistry Source Type: research
More News: PET Scan