Co1−XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: Synthesis, characterization and in vivo and in vitro biocompatibility study

Publication date: Available online 18 October 2018Source: Journal of Molecular LiquidsAuthor(s): Mostafa Zamani, Ehsan Naderi, Mozhgan Aghajanzadeh, Mahmoud Naseri, Ali Sharafi, Hossein DanafarAbstractThe present paper aimed to synthesize, using thermal-treatment method, a variety of Co1-XZnxFe2O4-based nanocarriers (NCs) as Dual-controlled and targeted drug delivery systems (DDS) and provide a new structure as NCs suitable for the loading and pH-responsive characteristics of the chemotherapeutic curcumin (CUR). To study the structure, surface morphology, surface charge and magnetic properties of NCs, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), Zetasizer and vibrating sample magnetometer (VSM) were applied here. TEM images of Co0.2Zn0.8Fe2O4 (Co-0.2) showed that NCs had a uniform spherical mesoporous morphology with an average grain size of about ∼17 nm. Also, it was found that Drug loading was very high, about 22.70 and 21.99 for Co0.6Zn0.4Fe2O4 (Co-0.6) and Co0.4Zn0.6Fe2O4 (Co-0.4), respectively. Ad indicated, NCs had highly pH-dependent drug release behavior, although different and unique in every one of them, which could be related to zeta potential of Co-0.6. In fact, the neutral zeta potential of Co-0.6 became positive when the pH of releasing media changed from 7.4 to 5.5. Consequently, the hydrogen bond between the Co-0.6 and CUR brake. Therefore, as expected, drug releasing varied from Co-0.6 to...
Source: Journal of Molecular Liquids - Category: Molecular Biology Source Type: research