Exotic vortex structures of the dipolar Bose-Einstein condensates trapped in harmonic-like and toroidal potential

Publication date: Available online 18 October 2018Source: Physics Letters AAuthor(s): Rui-Fang Zhang, Xiao-Fei Zhang, Lu LiAbstractBased on the tunable intensity and waist of Gaussian laser, harmonic-like and toroidal potentials can be achieved and the ground-state properties of the dipolar Bose-Einstein condensate (BEC) trapped in such potentials are investigated. It is found that, in the harmonic-like potential, the singly and doubly quantized vortices can exist in the scale condensate and translate respectively into vortex pairs and triangular vortex lattice with increasing dipole-dipole interaction (DDI). Especially, the sandwich-like structure can be observed in the ground-state density profiles by tuning the direction and strength of DDI for some rotating frequency. In the toroidal potential, the competition between the inter-component interaction and DDI can induce the transition between immiscible and miscible states, and results in the structures of a doubly quantized vortex surrounded by a vortex ring. It is worth emphasizing that, with the increasing of DDI, the doubly quantized vortex in the harmonic-like potential becomes two singly quantized vortices, while in the toroidal potential it is no happen due to the presence of Gaussian barrier.
Source: Physics Letters A - Category: Physics Source Type: research
More News: Physics