Molecules, Vol. 23, Pages 2634: The Positional Isomeric Effect on the Structural Diversity of Cd(II) Coordination Polymers, Using Flexible Positional Isomeric Ligands Containing Pyridyl, Triazole, and Carboxylate Fragments

Molecules, Vol. 23, Pages 2634: The Positional Isomeric Effect on the Structural Diversity of Cd(II) Coordination Polymers, Using Flexible Positional Isomeric Ligands Containing Pyridyl, Triazole, and Carboxylate Fragments Molecules doi: 10.3390/molecules23102634 Authors: Jonathan Cisterna Catherine Araneda Pilar Narea Alejandro Cárdenas Jaime Llanos Iván Brito To systematically investigate the influence of the positional isomeric effect on the structures of polymer complexes, we prepared two new polymers containing the two positional isomers ethyl 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-3-carboxylate (L1) and ethyl-5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate (L2), as well as Cd(II) ions. The structures of the metal–organic frameworks were determined by a single crystal XRD analysis. The compound [Cd(L1)2·4H2O] (1), is a hydrogen bond-induced coordination polymer, whereas the compound [Cd(L2)4·5H2O]n (2) is a three-dimensional (3-D) coordination polymer. Their structures and properties are tuned by the variable N-donor positions of the ligand isomers. This work indicates that the isomeric effect of the ligand isomers plays an important role in the construction of the Cd(II) complexes. In addition, the thermal and luminescent properties are reported in detail.
Source: Molecules - Category: Chemistry Authors: Tags: Article Source Type: research
More News: Chemistry | Organic