Advances in Imaging and Automated Quantification of Malignant Pulmonary Diseases: A State-of-the-Art Review

AbstractQuantitative imaging in lung cancer is a rapidly evolving modality in radiology that is changing clinical practice from a qualitative analysis of imaging features to a more dynamic, spatial, and phenotypical characterization of suspected lesions. Some quantitative parameters, such as the use of 18F-FDG PET/CT-derived standard uptake values (SUV), have already been incorporated into current practice as it provides important information for diagnosis, staging, and treatment response of patients with lung cancer. A growing body of evidence is emerging to support the use of quantitative parameters from other modalities. CT-derived volumetric assessment, CT and MRI lung perfusion scans, and diffusion-weighted MRI are some of the examples. Software-assisted technologies are the future of quantitative analyses in order to decrease intra- and inter-observer variability. In the era of “big data”, widespread incorporation of radiomics (extracting quantitative information from medical images by converting them into minable high-dimensional data) will allow medical imaging to surpass its current status quo and provide more accurate histological correlations and prognostic value in lung cancer. This is a comprehensive review of some of the quantitative image methods and computer-aided systems to the diagnosis and follow-up of patients with lung cancer.
Source: Lung - Category: Respiratory Medicine Source Type: research