RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells

AbstractThe survival and growth of multiple myeloma (MM) cells are facilitated by cell –cell interactions with bone marrow stromal cells and the bone marrow microenvironment. These interactions induce de novo drug resistance known as cell adhesion-mediated drug resistance. Our previous results recently revealed that the receptor activator of NF-κB (RANK) ligand (RANKL), which is ex pressed by bone marrow stromal cells, contributes to anti-cancer drug resistance through the activation of various signaling molecules and suppression of Bim expression in RANK-expressing MM cells. However, the detailed mechanisms underlying RANKL-induced drug resistance remain uncharacterized. In t he present study, we investigated the mechanism of RANKL-induced drug resistance in RANK-expressing MM cell lines. We found treatment of MM cells with RANKL-induced c-Src phosphorylation and activation of the downstream signaling molecules Akt, mTOR, STAT3, JNK, and NF-κB. In addition, treatment wi th dasatinib, a c-Src inhibitor, overcame RANKL- and bone marrow stromal cell-induced drug resistance to adriamycin, vincristine, dexamethasone, and melphalan by suppressing c-Src, Akt, mTOR, STAT3, JNK, and NF-κB activation and enhancing expression of Bim. Overall, RANKL- and bone marrow stromal c ell-induced drug resistance correlated with the activation of c-Src signaling pathways, which caused a decrease in Bim expression. Dasatinib treatment of RANK-expressing MM cells re-sensitized them to anti-can...
Source: Clinical and Experimental Medicine - Category: Research Source Type: research