Metabolism of Docosahexaenoic Acid (DHA) Induces Pyroptosis in BV-2 Microglial Cells

In this study, an immortalized murine microglia cell line (BV-2) was used to evaluate the effect of DHA on neuroinflammatory cells. Pretreatment of BV-2 cells with low concentrations of DHA (30  µM) attenuates lipopolysaccharide-mediated inflammatory cytokine gene expression, consistent with known anti-inflammatory effects. However, higher (but still physiologically relevant) concentrations of DHA (200 µM) induce profound cell swelling and a reduction of viability. This is accompanied by increases in the expressions of inflammatory cytokine and lipoxygenase genes, activation of caspase-1 activity, and release of IL1β, indicating that cells were undergoing a proinflammatory cell death program known as pyroptosis. This process could be attenuated by pharmacological inhibition of 1 2-lipoxygenase (12-LOX,Alox12e), but not by inhibition of 5-LOX or 15-LOX. Cumulatively, these data demonstrate that DHA has an anti-inflammatory effect on microglial cells, but its metabolism by 12-LOX generates one or more products that activate a proinflammatory cell death program.
Source: NeuroMolecular Medicine - Category: Neurology Source Type: research
More News: Brain | Genetics | Neurology | Study