The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer ’s disease

AbstractSynaptic degeneration and neuronal loss are early events in Alzheimer ’s disease (AD), occurring long before symptom onset, thus making synaptic biomarkers relevant for enabling early diagnosis. The postsynaptic protein neurogranin (Ng) is a cerebrospinal fluid (CSF) biomarker for AD, also in the prodromal phase. Here we tested the hypothesis that during AD neurodeg eneration, processing of full-length Ng into endogenous peptides in the brain is increased. We characterized Ng in post-mortem brain tissue and investigated the levels of endogenous Ng peptides in relation to full-length protein in brain tissue of patients with sporadic (sAD) and familial Alzheimer’ s disease (fAD), healthy controls and individuals who were cognitively unaffected but amyloid-positive (CU-AP) in two different brain regions. Brain tissue from parietal cortex [sAD (n = 10) and age-matched controls (n = 10)] and temporal cortex [sAD (n = 9), fAD (n = 10), CU-AP (n = 13) and controls (n = 9)] were included and all the samples were analyzed by three different methods. Using high-resolution mass spectrometry, 39 endogenous Ng peptides were identified while full-length Ng was found to be modified including disulfide bridges or glutathione. In sAD parietal cortex, the ratio of pep tide-to-total full-length Ng was significantly increased for eight endogenous Ng peptides compared to controls. In the temporal cortex, several of the peptide-to-total full-length Ng ratios were increa...
Source: Acta Neuropathologica - Category: Neurology Source Type: research