Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid-derived 2-related factor 2 nuclear translocation.

Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces hepatic steatosis and endoplasmic reticulum stress by inducing nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Toxicol Appl Pharmacol. 2018 Sep 22;: Authors: Yoo J, Cho IJ, Jeong IK, Ahn KJ, Chung HY, Hwang YC Abstract Activation of endoplasmic reticulum (ER) stress is involved in the development of nonalcoholic fatty liver disease. Glucagon-like peptide-1 (GLP-1) has been reported to reduce hepatic steatosis, but the underlying mechanism has not been fully elucidated. Here, we investigated whether exendin-4 (EX-4), a GLP-1 receptor analogue, improves hepatic steatosis through ER stress reduction. Furthermore, we explored which ER stress pathway is involved in this process, with a focus on the protein kinase RNA-like ER kinase (PERK)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway. EX-4 treatment reduced hepatic lipid accumulation by suppressing the expression of lipogenic genes and restoring the expression of β-oxidation genes in palmitate-treated HepG2 cells and high fat diet (HFD)-fed mice. In addition, EX-4 treatment suppressed hepatic ER stress activation in HFD-fed mice and tunicamycin-treated mice. In particular, EX-4 treatment restored HFD- and tunicamycin-induced Nrf2 nuclear translocation to control levels. Inhibition of Nrf2 by siRNA enhanced phosphorylation of PERK and eukaryotic translation initiation factor 2α ...
Source: Toxicology and Applied Pharmacology - Category: Toxicology Authors: Tags: Toxicol Appl Pharmacol Source Type: research