Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells.

Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys. 2018 Sep 21;: Authors: Ma J, Yu KN, Cheng C, Ni G, Shen J, Han W Abstract Non-thermal plasma (NTP) treatment has been proposed as a potential approach for cancer therapy for killing cancer cells via generation of reactive oxygen species (ROS). As an antioxidant protein, Heme oxygenase-1 (HO-1) has been known to protect cells against oxidative stress. In this paper, we investigated the role of HO-1 activation in NTP-induced apoptosis in A549 cells. Distinctly increased ROS production and apoptosis were observed after NTP exposure. NTP exposure induced HO-1 expression in a dose- and time-dependent manner via activating the translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) from cytoplasm to nucleus. Furthermore, inhibiting HO-1 activation with its specific inhibitor, ZnPP, increased "killing" effect of NTP. Knocking down HO-1 or Nrf2 with the special siRNA also led to elevated ROS level and enhanced NTP-induced cell death. In addition, the c-JUN N-terminal kinase (JNK) signaling pathway was shown to be involved in NTP-induced HO-1 expression. Interestingly, a higher resistance to NTP exposure of A549 cell compared to H1299 and H322 cells was found to be linked to its higher basal level of HO-1 expression. These findings revealed that HO-1 could be considered as a ...
Source: Archives of Biochemistry and Biophysics - Category: Biochemistry Authors: Tags: Arch Biochem Biophys Source Type: research