JS-K as a nitric oxide donor induces apoptosis via the ROS/Ca2+/caspase-mediated mitochondrial pathway in HepG2 cells

Publication date: November 2018Source: Biomedicine & Pharmacotherapy, Volume 107Author(s): Zile Huang, Ling Liu, Jingjing Chen, Mengyao Cao, Jiangang WangAbstractJS-K, (O2-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen 1-ium-1, 2-diolate), is a novel diazeniumdiolate-based nitric oxide donor prodrug. The present study investigated the relationship between reactive oxygen species (ROS) elevation, Ca2+ overload and mitochondrial disruption in JS-K-induced apoptosis. JS-K could significantly inhibit cell growth and induce apoptosis in a dose-dependent manner. Meanwhile, JS-K caused the accumulation of ROS, overload of Ca2+, decrease of mitochondrial membrane potential, release of cytochrome c (Cyt c) from mitochondria to the cytoplasm, increase of Bax-to-Bcl-2 ratio and activation of caspase- 9/3. NAC (an antioxidant) or BAPTA (an intracellular Ca2+ chelator) could partially reverse the above events, while BAPTA had little effect on the levels of ROS. Furthermore, pre-treatment with Carboxy-PTIO (a NO scavenger) significantly blocked the increasing of ROS, cytosolic Ca2+ and reversed the loss of mitochondrial membrane potential in JS-K-induced apoptosis. Taken together, the results suggested that NO released from JS-K could significantly induce HepG2 cell apoptosis through a ROS/Ca2+/caspase-mediated mitochondrial pathway.
Source: Biomedicine and Pharmacotherapy - Category: Drugs & Pharmacology Source Type: research