Secretion of misfolded cytosolic proteins from mammalian cells is independent of chaperone-mediated autophagy [Cell Biology]

In eukaryotic cells, elimination of misfolded proteins is essential for maintaining protein homeostasis and cell viability. Misfolding-associated protein secretion (MAPS) is a protein quality-control mechanism that exports misfolded cytosolic proteins via a compartment characteristic of late endosomes, but how cytosolic proteins enter this compartment is unclear. Because chaperone-mediated autophagy (CMA) is a known mechanism that imports cytosolic proteins bearing a specific CMA motif to lysosomes for degradation and because late endosomes and lysosomes overlap significantly in mammalian cells, we determined here whether CMA is involved in targeting protein cargoes to the lumen of late endosomes in MAPS. Using HEK293T and COS-7 cells and immunoblotting and -staining and coimmunoprecipitation methods, we show that, unlike CMA, the secretion of misfolded proteins in MAPS does not require cargo unfolding, is inhibited by serum starvation, and is not dependent on the CMA motif in cargo. Intriguingly, knockdown of lysosome-associated membrane protein 2 (LAMP2), which consists of three isoforms, including a variant proposed to form a protein channel on lysosomes for CMA, attenuated MAPS. However, this could not be attributed to the proposed channel function of the LAMP2a isoform because overexpression of a cytosolic MAPS stimulator, DnaJ heat shock protein family (Hsp40) member C5 (DNAJC5), fully rescued the secretion defect associated with LAMP2 deficiency. We conclude that, in M...
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Cell Biology Source Type: research
More News: Biology | Chemistry | Cytology