The combination of the opioid glycopeptide MMP-2200 and a NMDA receptor antagonist reduced L-DOPA-induced dyskinesia and MMP-2200 by itself reduced dopamine receptor 2-like agonist-induced dyskinesia.

In this study, the mixed mu-delta agonist MMP-2200 was investigated in standard preclinical rodent models of PD and of LID to evaluate its effects on abnormal involuntary movements (AIMs). MMP-2200 showed antiparkinsonian activity, while increasing l-DOPA-induced limb, axial, and oral (LAO) AIMs by ∼10%, and had no effect on dopamine receptor 1 (D1R)-induced LAO AIMs. In contrast, it markedly reduced dopamine receptor 2 (D2R)-like-induced LAO AIMs. The locomotor AIMs were reduced by MMP-2200 in all three conditions. The N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 has previously been shown to be anti-dyskinetic, but only at doses that induce parkinsonism. When MMP-2200 was co-administered with MK-801, MK-801-induced pro-parkinsonian activity was suppressed, while a robust anti-dyskinetic effect remained. In summary, the opioid glycopeptide MMP-2200 reduced AIMs induced by a D2R-like agonist, and MMP-2200 modified the effect of MK-801 to result in a potent reduction of l-DOPA-induced AIMs without induction of parkinsonism. PMID: 30201210 [PubMed - as supplied by publisher]
Source: Neuropharmacology - Category: Drugs & Pharmacology Authors: Tags: Neuropharmacology Source Type: research