GSE119754 Transcriptomic Signature of Right Ventricular Failure in Experimental Pulmonary Arterial Hypertension: Deep Sequencing Demonstrates Mitochondrial, Fibrotic, Inflammatory and Angiogenic Abnormalities

Contributors : Francois Potus ; Charles C Hindmarch ; Kimberly J Dunham-Snary ; Jeff Stafford ; Stephen L ArcherSeries Type : Expression profiling by high throughput sequencingOrganism : Rattus norvegicusAbstract: Right ventricular failure (RVF) remains the leading cause of death in pulmonary arterial hypertension (PAH). We investigated the transcriptomic signature of RVF in hemodynamically well-phenotyped monocrotaline (MCT)-treated, male, Sprague-Dawley rats with severe PAH and decompensated RVF (increased right ventricular (RV) end diastolic volume (EDV), decreased cardiac output (CO), tricuspid annular plane systolic excursion (TAPSE) and ventricular-arterial decoupling). RNA sequencing revealed 2547 differentially regulated transcripts in MCT-RVF RVs. Multiple enriched gene ontology (GO) terms converged on mitochondria/metabolism, fibrosis, inflammation, and angiogenesis. The mitochondrial transcriptomic pathway is the most affected in RVF, with 413 dysregulated genes. Downregulated genes included tfam ( −0.45-fold), suggesting impaired mitochondrial biogenesis, Cyp2e1 (−3.8-fold), a monooxygenase which when downregulated increases oxidative stress, dehydrogenase/reductase 7C (Dhrs7c) (−2.8-fold), consistent with excessive autonomic activation, and polypeptide N-acetyl-galactose-aminyl-transfe rase 13 (Galnt13), a known pulmonary hypertension (PH) biomarker (−2.7-fold). The most up-regulated gene encodes Periostin (Postn; 4.5-fold), a matricellular protein rele...
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Rattus norvegicus Source Type: research