Targeted Thrombolysis by Using c-RGD-modified N,N,N-Trimethyl Chitosan Nanoparticles Loaded with Lumbrokinase.

This study develops a potential thrombolytic therapy by fabricating N,N,N-Trimethyl Chitosan (TMC) nanoparticles modified with the cyclic Arg-Gly-Asp-Phe-Lys peptide (c-RGD) and loaded with LK (i.e., c-RGD-LK-NPs). The binding of c-RGD to platelet membrane GPIIb/IIIa receptors is expected to enable targeted delivery of the c-RGD-conjugated TMC to the thrombus. The synthesized c-RGD-LK-NPs had a mean particle size of 232.0 nm, zeta potential of 19.8mV, entrapment efficiency of 52.7% ± 2.5%, and loading efficiency of 17.4% ± 0.65%. Transmission electron microscopy showed that they were generally spherical. The c-RGD-LK-NPs gave a cumulative in vitro LK release of 80.6% over 8 h, and the activity of LK was close to 80%, indicating that the nanoparticles protected the activity of LK. In vitro blood clot lysis assays were carried out and in vivo thrombolysis effect was tested in Sprague-Dawley rats carotid artery thrombus model. In all cases the c-RGD-LK-NPs showed superior performance compared with the free LK and the unmodified TMC nanoparticles loaded with LK. The c-RGD-LK-NPs reagent is expected to be potentially useful in treating thromboembolic diseases. PMID: 30198790 [PubMed - as supplied by publisher]
Source: Drug Development and Industrial Pharmacy - Category: Drugs & Pharmacology Tags: Drug Dev Ind Pharm Source Type: research