The dosimetric effect of electron density overrides in 3DCRT Lung SBRT for a range of lung tumor dimensions.

This study investigated the effect on plan quality and accuracy when overriding treatment volume electron density values. The QUASAR phantom with modified cork cylindrical inserts, each containing a simulated spherical tumor of 15-mm, 22-mm, or 30-mm diameter, was used to simulate lung tumor motion. Using Monaco 5.1 treatment planning software, two standard plans (50% central phase (50%) and average intensity projection (AIP)) were compared to eight electron density overridden plans that focused on different target volumes (internal target volume (ITV), planning target volume (PTV), and a hybrid plan (HPTV)). The target volumes were set to a variety of electron densities between lung and water equivalence. Minimal differences were seen in the 30-mm tumor in terms of target coverage, plan conformity, and improved dosimetric accuracy. For the smaller tumors, a PTV override showed improved target coverage as well as better plan conformity compared to the baseline plans. The ITV plans showed the highest gamma pass rate agreement between treatment planning system (TPS) and measured dose (P < 0.040). However, the low electron density PTV and HPTV plans also showed improved gamma pass rates (P < 0.035, P < 0.011). Low-density PTV overrides improved the plan quality and accuracy for tumor diameters less than 22 mm only. Although an ITV override generated the most significant increase in accuracy, the low-density PTV plans had the additional benefit of plan quality imp...
Source: Journal of Applied Clinical Medical Physics - Category: Physics Authors: Tags: J Appl Clin Med Phys Source Type: research
More News: Monaco Health | Physics | Study