Beta-glucan-induced inflammatory monocytes mediate antitumor efficacy in the murine lung

Abstractβ-Glucan is a naturally occurring glucose polysaccharide with immunostimulatory activity in both infection and malignancy. β-Glucan’s antitumor effects have been attributed to the enhancement of complement receptor 3-dependent cellular cytotoxicity, as well as modulation of suppressive and stimu latory myeloid subsets, which in turn enhances antitumor T cell immunity. In the present study, we demonstrate antitumor efficacy of yeast-derived β-glucan particles (YGP) in a model of metastatic-like melanoma in the lung, through a mechanism that is independent of previously reported β-glucan-me diated antitumor pathways. Notably, efficacy is independent of adaptive immunity, but requires inflammatory monocytes. YGP-activated monocytes mediated direct cytotoxicity against tumor cells in vitro, and systemic YGP treatment upregulated inflammatory mediators, including TNFα, M-CSF, and CCL2, i n the lungs. Collectively, these studies identify a novel role for inflammatory monocytes in β-glucan-mediated antitumor efficacy, and expand the understanding of how this immunomodulator can be used to generate beneficial immune responses against metastatic disease.
Source: Cancer Immunology, Immunotherapy - Category: Cancer & Oncology Source Type: research