Selective Mapping of Deep Brain Stimulation Lead Currents Using Acoustoelectric Imaging

We describe a new application of acoustoelectric imaging for non-invasive mapping of the location, magnitude and polarity of current generated by a clinical deep brain stimulation (DBS) device. Ultrasound at 1 MHz was focused near the DBS device as short current pulses were injected across different DBS leads. A recording electrode detected the high-frequency acoustoelectric interaction signal. Linear scans of the US beam produced time-varying images of the magnitude and polarity of the induced current, enabling precise localization of the DBS leads within 0.70 mm, a detection threshold of 1.75 mA at 1 MPa and a sensitivity of 0.52 ± 0.07 μV/(mA*MPa).
Source: Ultrasound in Medicine and Biology - Category: Radiology Authors: Tags: Original Contribution Source Type: research